
Python Objects and Class
In this article, you'll learn about the core functionality of Python, Python
objects and classes. You'll learn what a class is, how to create it and use it in
your program.

Table of Contents

 What are classes and objects in Python?
 Defining a Class in Python
 Creating an Object in Python
 Constructors in Python
 Deleting Attributes and Objects

What are classes and objects in Python?

Python is an object oriented programming language. Unlike procedure oriented
programming, where the main emphasis is on functions, object oriented
programming stress on objects.

Object is simply a collection of data (variables) and methods (functions) that act on
those data. And, class is a blueprint for the object.

We can think of class as a sketch (prototype) of a house. It contains all the details
about the floors, doors, windows etc. Based on these descriptions we build the
house. House is the object.

As, many houses can be made from a description, we can create many objects from
a class. An object is also called an instance of a class and the process of creating
this object is called instantiation.

Defining a Class in Python

Like function definitions begin with the keyword def, in Python, we define a class
using the keyword class.

The first string is called docstring and has a brief description about the class.
Although not mandatory, this is recommended.

Here is a simple class definition.

class MyNewClass:

https://www.programiz.com/python-programming/class#what
https://www.programiz.com/python-programming/class#define
https://www.programiz.com/python-programming/class#create
https://www.programiz.com/python-programming/class#constructor
https://www.programiz.com/python-programming/class#delete
https://www.programiz.com/python-programming/keyword-list#def
https://www.programiz.com/python-programming/keyword-list#class

 '''This is a docstring. I have created a new class'''

 pass

A class creates a new local namespace where all its attributes are defined. Attributes
may be data or functions.

There are also special attributes in it that begins with double underscores (__). For
example, __doc__ gives us the docstring of that class.

As soon as we define a class, a new class object is created with the same name.
This class object allows us to access the different attributes as well as to instantiate
new objects of that class.

class MyClass:

 "This is my second class"

 a = 10

 def func(self):

 print('Hello')

Output: 10

print(MyClass.a)

Output: <function MyClass.func at 0x0000000003079BF8>

print(MyClass.func)

Output: 'This is my second class'

print(MyClass.__doc__)

When you run the program, the output will be:

10

<function 0x7feaa932eae8="" at="" myclass.func="">

This is my second class

Creating an Object in Python

We saw that the class object could be used to access different attributes.

It can also be used to create new object instances (instantiation) of that class. The
procedure to create an object is similar to a function call.

>>> ob = MyClass()

https://www.programiz.com/python-programming/namespace
https://www.programiz.com/python-programming/function

This will create a new instance object named ob. We can access attributes of objects
using the object name prefix.

Attributes may be data or method. Method of an object are corresponding functions
of that class. Any function object that is a class attribute defines a method for objects
of that class.

This means to say, since MyClass.func is a function object (attribute of
class), ob.func will be a method object.

class MyClass:

 "This is my second class"

 a = 10

 def func(self):

 print('Hello')

create a new MyClass

ob = MyClass()

Output: <function MyClass.func at 0x000000000335B0D0>

print(MyClass.func)

Output: <bound method MyClass.func of <__main__.MyClass object at

0x000000000332DEF0>>

print(ob.func)

Calling function func()

Output: Hello

ob.func()

You may have noticed the self parameter in function definition inside the class but,
we called the method simply as ob.func() without any arguments. It still worked.

This is because, whenever an object calls its method, the object itself is passed as
the first argument. So, ob.func() translates into MyClass.func(ob).

In general, calling a method with a list of n arguments is equivalent to calling the
corresponding function with an argument list that is created by inserting the method's
object before the first argument.

For these reasons, the first argument of the function in class must be the object
itself. This is conventionally called self. It can be named otherwise but we highly
recommend to follow the convention.

Now you must be familiar with class object, instance object, function object, method
object and their differences.

Constructors in Python

https://www.programiz.com/python-programming/function-argument

Class functions that begins with double underscore (__) are called special functions
as they have special meaning.

Of one particular interest is the __init__() function. This special function gets called
whenever a new object of that class is instantiated.

This type of function is also called constructors in Object Oriented Programming
(OOP). We normally use it to initialize all the variables.

class ComplexNumber:

 def __init__(self,r = 0,i = 0):

 self.real = r

 self.imag = i

 def getData(self):

 print("{0}+{1}j".format(self.real,self.imag))

Create a new ComplexNumber object

c1 = ComplexNumber(2,3)

Call getData() function

Output: 2+3j

c1.getData()

Create another ComplexNumber object

and create a new attribute 'attr'

c2 = ComplexNumber(5)

c2.attr = 10

Output: (5, 0, 10)

print((c2.real, c2.imag, c2.attr))

but c1 object doesn't have attribute 'attr'

AttributeError: 'ComplexNumber' object has no attribute 'attr'

c1.attr

In the above example, we define a new class to represent complex numbers. It has
two functions, __init__() to initialize the variables (defaults to zero) and getData() to
display the number properly.

An interesting thing to note in the above step is that attributes of an object can be
created on the fly. We created a new attribute attr for object c2 and we read it as
well. But this did not create that attribute for object c1.

Deleting Attributes and Objects

Any attribute of an object can be deleted anytime, using the del statement. Try the
following on the Python shell to see the output.

>>> c1 = ComplexNumber(2,3)

>>> del c1.imag

>>> c1.getData()

Traceback (most recent call last):

...

AttributeError: 'ComplexNumber' object has no attribute 'imag'

>>> del ComplexNumber.getData

>>> c1.getData()

Traceback (most recent call last):

...

AttributeError: 'ComplexNumber' object has no attribute 'getData'

We can even delete the object itself, using the del statement.

>>> c1 = ComplexNumber(1,3)

>>> del c1

>>> c1

Traceback (most recent call last):

...

NameError: name 'c1' is not defined

Actually, it is more complicated than that. When we do c1 = ComplexNumber(1,3), a
new instance object is created in memory and the name c1 binds with it.

On the command del c1, this binding is removed and the name c1 is deleted from the
corresponding namespace. The object however continues to exist in memory and if
no other name is bound to it, it is later automatically destroyed.

This automatic destruction of unreferenced objects in Python is also called garbage
collection.

Python Inheritance
Inheritance enable us to define a class that takes all the functionality from
parent class and allows us to add more. In this article, you will learn to use
inheritance in Python.

Table of Contents

 What is Inheritance?
o Python Inheritance Syntax
o Example of Inheritance in Python

 Method Overriding in Python

What is Inheritance?

Inheritance is a powerful feature in object oriented programming.

It refers to defining a new class with little or no modification to an existing class. The
new class is called derived (or child) class and the one from which it inherits is
called the base (or parent) class.

Python Inheritance Syntax

class BaseClass:

 Body of base class

class DerivedClass(BaseClass):

 Body of derived class

Derived class inherits features from the base class, adding new features to it. This
results into re-usability of code.

Example of Inheritance in Python

To demonstrate the use of inheritance, let us take an example.

https://www.programiz.com/python-programming/inheritance#what
https://www.programiz.com/python-programming/inheritance#syntax
https://www.programiz.com/python-programming/inheritance#eg
https://www.programiz.com/python-programming/inheritance#method
https://www.programiz.com/python-programming/class

A polygon is a closed figure with 3 or more sides. Say, we have a class
called Polygondefined as follows.

class Polygon:

 def __init__(self, no_of_sides):

 self.n = no_of_sides

 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):

 self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i
in range(self.n)]

 def dispSides(self):

 for i in range(self.n):

 print("Side",i+1,"is",self.sides[i])

This class has data attributes to store the number of sides, n and magnitude of each
side as a list, sides.

Method inputSides() takes in magnitude of each side and similarly, dispSides() will
display these properly.

A triangle is a polygon with 3 sides. So, we can created a class
called Triangle which inherits from Polygon. This makes all the attributes available in
class Polygon readily available in Triangle. We don't need to define them again
(code re-usability). Triangle is defined as follows.

class Triangle(Polygon):

 def __init__(self):

 Polygon.__init__(self,3)

 def findArea(self):

 a, b, c = self.sides

 # calculate the semi-perimeter

 s = (a + b + c) / 2

 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

 print('The area of the triangle is %0.2f' %area)

However, class Triangle has a new method findArea() to find and print the area of
the triangle. Here is a sample run.

>>> t = Triangle()

>>> t.inputSides()

Enter side 1 : 3

 Enter side 2 : 5

Enter side 3 : 4

>>> t.dispSides()

Side 1 is 3.0

Side 2 is 5.0

Side 3 is 4.0

>>> t.findArea()

The area of the triangle is 6.00

We can see that, even though we did not define methods
like inputSides() or dispSides()for class Triangle, we were able to use them.

If an attribute is not found in the class, search continues to the base class. This
repeats recursively, if the base class is itself derived from other classes.

Method Overriding in Python

In the above example, notice that __init__() method was defined in both
classes, Triangleas well Polygon. When this happens, the method in the derived
class overrides that in the base class. This is to say, __init__() in Triangle gets
preference over the same in Polygon.

Generally when overriding a base method, we tend to extend the definition rather
than simply replace it. The same is being done by calling the method in base class
from the one in derived class
(calling Polygon.__init__() from __init__() in Triangle).

A better option would be to use the built-in function super().
So, super().__init__(3) is equivalent to Polygon.__init__(self,3) and is preferred.
You can learn more about the super() function in Python.

Two built-in functions isinstance() and issubclass() are used to check inheritances.
Function isinstance() returns True if the object is an instance of the class or other
classes derived from it. Each and every class in Python inherits from the base
class object.

>>> isinstance(t,Triangle)

True

>>> isinstance(t,Polygon)

True

>>> isinstance(t,int)

False

>>> isinstance(t,object)

True

Similarly, issubclass() is used to check for class inheritance.

>>> issubclass(Polygon,Triangle)

False

>>> issubclass(Triangle,Polygon)

True

>>> issubclass(bool,int)

True

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

Python Multiple Inheritance
In this article, you'll learn what is multiple inheritance in Python and how to
use it in your program. You'll also learn about multilevel inheritance and the
method resolution order.

Table of Contents

 Multiple Inheritance in Python
 Multilevel Inheritance in Python
 Method Resolution Order in Python

Multiple Inheritance in Python

Like C++, a class can be derived from more than one base classes in Python. This is
called multiple inheritance.

In multiple inheritance, the features of all the base classes are inherited into the
derived class. The syntax for multiple inheritance is similar to single inheritance.

Example

class Base1:

 pass

class Base2:

 pass

class MultiDerived(Base1, Base2):

 pass

Here, MultiDerived is derived from classes Base1 and Base2.

https://www.programiz.com/python-programming/multiple-inheritance#inheritance
https://www.programiz.com/python-programming/multiple-inheritance#multilevel
https://www.programiz.com/python-programming/multiple-inheritance#resolution
https://www.programiz.com/python-programming/class
https://www.programiz.com/python-programming/inheritance

The class MultiDerived inherits from both Base1 and Base2.

Multilevel Inheritance in Python

On the other hand, we can also inherit form a derived class. This is called multilevel
inheritance. It can be of any depth in Python.

In multilevel inheritance, features of the base class and the derived class is inherited
into the new derived class.

An example with corresponding visualization is given below.

class Base:

 pass

class Derived1(Base):

 pass

class Derived2(Derived1):

 pass

Here, Derived1 is derived from Base, and Derived2 is derived from Derived1.

Method Resolution Order in Python

Every class in Python is derived from the class object. It is the most base type in
Python.

So technically, all other class, either built-in or user-defines, are derived classes and
all objects are instances of object class.

Output: True

print(issubclass(list,object))

Output: True

print(isinstance(5.5,object))

Output: True

print(isinstance("Hello",object))

In the multiple inheritance scenario, any specified attribute is searched first in the
current class. If not found, the search continues into parent classes in depth-first,
left-right fashion without searching same class twice.

So, in the above example of MultiDerived class the search order is
[MultiDerived, Base1, Base2, object]. This order is also called linearization
of MultiDerived class and the set of rules used to find this order is called Method

Resolution Order (MRO).

MRO must prevent local precedence ordering and also provide monotonicity. It
ensures that a class always appears before its parents and in case of multiple
parents, the order is same as tuple of base classes.

MRO of a class can be viewed as the __mro__ attribute or mro() method. The former
returns a tuple while latter returns a list.

>>> MultiDerived.__mro__

(<class '__main__.MultiDerived'>,

 <class '__main__.Base1'>,

 <class '__main__.Base2'>,

 <class 'object'>)

>>> MultiDerived.mro()

[<class '__main__.MultiDerived'>,

 <class '__main__.Base1'>,

 <class '__main__.Base2'>,

 <class 'object'>]

Here is a little more complex multiple inheritance example and its visualization along
with the MRO.

class X: pass

class Y: pass

class Z: pass

class A(X,Y): pass

class B(Y,Z): pass

class M(B,A,Z): pass

Output:

[<class '__main__.M'>, <class '__main__.B'>,

<class '__main__.A'>, <class '__main__.X'>,

<class '__main__.Y'>, <class '__main__.Z'>,

<class 'object'>]

print(M.mro())

Refer to this, for further discussion on MRO and to know the actual algorithm how it
is calculated.

Python Operator Overloading
You can change the meaning of an operator in Python depending upon the operands

used. This practice is known as operating overloading.

Table of Contents

 What is operator overloading in Python?

 Special Functions in Python

 Overloading the + Operator in Python

 Overloading Comparison Operators in Python

http://www.python.org/download/releases/2.3/mro/
https://www.programiz.com/python-programming/operator-overloading#what
https://www.programiz.com/python-programming/operator-overloading#special
https://www.programiz.com/python-programming/operator-overloading#overload-plus
https://www.programiz.com/python-programming/operator-overloading#overload-comparison

What is operator overloading in Python?

Python operators work for built-in classes. But same operator behaves differently
with different types. For example, the + operator will, perform arithmetic addition on
two numbers, merge two lists and concatenate two strings.

This feature in Python, that allows same operator to have different meaning
according to the context is called operator overloading.

So what happens when we use them with objects of a user-defined class? Let us
consider the following class, which tries to simulate a point in 2-D coordinate system.

class Point:

 def __init__(self, x = 0, y = 0):

 self.x = x

 self.y = y

Now, run the code and try to add two points in Python shell.

>>> p1 = Point(2,3)

>>> p2 = Point(-1,2)

>>> p1 + p2

Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for +: 'Point' and 'Point'

Whoa! That's a lot of complains. TypeError was raised since Python didn't know how
to add two Point objects together.

However, the good news is that we can teach this to Python through operator
overloading. But first, let's get a notion about special functions.

Special Functions in Python

Class functions that begins with double underscore __ are called special functions in
Python. This is because, well, they are not ordinary. The __init__() function we
defined above, is one of them. It gets called every time we create a new object of
that class. There are a ton of special functions in Python.

https://www.programiz.com/python-programming/operators
http://docs.python.org/3/reference/datamodel.html#special-method-names

Using special functions, we can make our class compatible with built-in functions.

>>> p1 = Point(2,3)

>>> print(p1)

<__main__.Point object at 0x00000000031F8CC0>

That did not print well. But if we define __str__() method in our class, we can control
how it gets printed. So, let's add this to our class.

class Point:

 def __init__(self, x = 0, y = 0):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x,self.y)

Run
Powered by DataCamp

Now let's try the print() function again.

>>> p1 = Point(2,3)

>>> print(p1)

(2,3)

That's better. Turns out, that this same method is invoked when we use the built-in
function str() or format().

>>> str(p1)

'(2,3)'

>>> format(p1)

'(2,3)'

So, when you do str(p1) or format(p1), Python is internally doing p1.__str__().
Hence the name, special functions.

Ok, now back to operator overloading.

https://www.datacamp.com/
https://www.datacamp.com/

Overloading the + Operator in Python

To overload the + sign, we will need to implement __add__() function in the class.
With great power comes great responsibility. We can do whatever we like, inside this
function. But it is sensible to return a Point object of the coordinate sum.

class Point:

 def __init__(self, x = 0, y = 0):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x,self.y)

 def __add__(self,other):

 x = self.x + other.x

 y = self.y + other.y

 return Point(x,y)

Now let's try that addition again.

>>> p1 = Point(2,3)

>>> p2 = Point(-1,2)

>>> print(p1 + p2)

(1,5)

What actually happens is that, when you do p1 + p2, Python will
call p1.__add__(p2) which in turn is Point.__add__(p1,p2). Similarly, we can overload
other operators as well. The special function that we need to implement is tabulated
below.

Operator Overloading Special Functions in Python

Operator Expression Internally

Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Overloading Comparison Operators in
Python

Python does not limit operator overloading to arithmetic operators only. We can
overload comparison operators as well.

Suppose, we wanted to implement the less than symbol < symbol in our Point class.

Let us compare the magnitude of these points from the origin and return the result
for this purpose. It can be implemented as follows.

class Point:

 def __init__(self, x = 0, y = 0):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x,self.y)

 def __lt__(self,other):

 self_mag = (self.x ** 2) + (self.y ** 2)

 other_mag = (other.x ** 2) + (other.y ** 2)

 return self_mag < other_mag

Try these sample runs in Python shell.

>>> Point(1,1) < Point(-2,-3)

True

>>> Point(1,1) < Point(0.5,-0.2)

False

>>> Point(1,1) < Point(1,1)

False

Similarly, the special functions that we need to implement, to overload other
comparison operators are tabulated below.

Comparision Operator Overloading in Python

Operator Expression Internally

Less than p1 < p2 p1.__lt__(p2)

Less than or equal to p1 <= p2 p1.__le__(p2)

Equal to
p1 == p2 p1.__eq__(p2)

Not equal to p1 != p2 p1.__ne__(p2)

Greater than p1 > p2 p1.__gt__(p2)

Greater than or equal to p1 >= p2 p1.__ge__(p2)

